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Abstract 

A transverse bunched beam instability formalism is presented, which is 
used to analyse the transverse Robinson type, the head-tail, and the coupled 
bunch instabilities. The formalism can also be used for the transverse mode 
coupling study, and its simplified version can include the Landau damping, 
and therefore to estimate the instabfity threshold. The presentation is 
focused on the beam signal spectrum, the impedance, and their samplings. 



TRANSVERSE BUNCHED BEAM INSTABILITY 

1 Introduction 
In this article, a transverse bunched beam instability formalism is presented. Based on the 
particle distribution, a set of orthogonal polynomials is used for the expansion of radial 
modes, which enables the formalism in dealing with the transverse Robinson instability, the 
head tail instability, the coupled bunch instability, and the transverse mode coupling as well. 

From the formalism it is shown that the envelope product of the beam signal spectrum 
and the impedance is an important factor in determining the beam instability. Also, since 
the beam signal is periodic, the real beam signal spectrum is a train of pulses, which implies 
that the effective impedance is determined by this samplings. In this article, the mechanism 
of the instability is studied by focusing on these two aspects. 

After presenting the formalism and the solutions, the beam signal spectrum and the 
impedance will be studied. The result, together with the signal samplings, is used for the 
single bunch instability study. Finally the multiple bunch instability and some application 
to the AGS are presented. 

In a simplified version, the first orthogonal polynomial can be used, which reduces the 
dynamic equation into a scale equation, then the Landau damping can be included and the 
growth rate and instability threshold can be estimated. Most issues related to the simplified 
version and the transverse mode coupling will be presented in separate works. 

2 Sacherer Integral Equation for Transverse Motion 
Consider the four dimensional phase space of longitudinal and transverse motion. The Vlasov 
equation is [I], 

where +(z, k, q51 & t )  is the normalized phase space density, q5 is the phase deviation of the 
particle and z is the transverse displacement. Neglecting longitudinal perturbation, the 
synchrotron Oscillation is described as, 

4 + w;q5 = 0 

where w s  is the synchrotron oscillation frequency. The betatron oscillation is described as, 

.. 2 Fz x + wpx = - 
m0Y 

1 

(2-3) 



where u p  is the betatron oscillation frequency. F, is the wake force due to the field induced 
by the perturbation, and is the relativistic mass of the particle. 

We write the phase space co-ordinates (4, d / w s )  in the polar phase s p a  (r, e), 

4=rcose 

qi/us = r sin 

and similarly for the transverse phase space, 

4, = r, cos 0, 

$,/up = r, sine, 

w w Fx 

Accordingly, the Vlasov equation (2-1) is written as, 

-us-& - wp- = --- w 
at ae, %Tax 
- 

Let the particle distribution be, 

$ = $o(r)$d(r,) + $p(r, e)$zp(r,, 8x)2wt (2-9) 
where we assume that the unperturbed stationary distribution depends only on radial and 
the perturbed terms in the two directions are not crossaffected. Using 

$0 
-- W,O sine, d$,o 
ax W p  dr, 

N-- 

the linearized Vlasov equation becomes, 

Assuming a rigid transverse dipole oscillation in phase space with radius D, 

and letting 

sine, M - 
2 j  

then the equation (2-11) becomes, 

Consider the longitudinal perturbation distribution, 

where R(m’)(r) is the radial hnction with the m’th azimuthal mode. The corresponding line 
density is defined as, 
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which can be Fourier expanded as, 

where the spectrum A(p)  is defined as, 

~ ( p )  = J m  X(+)e-jp+d+ 
-W 

If we define the Hankel spectrum of the radial function Idm)(r) as, 

ncm)(p) = Jw R(")(r)Jm(pr)Tdr 
-W 

(2-19) 

then the relation between the Fourier spectrum of the line density, expanded on the phase 
deviation 6, and the Hankel spectrum of the radial function is shown as, 

m 

Using the relation 

F = e E  

the wake force Fx is written as, 

where &(p) is the transverse impedance sampled at the frequency P O ,  wo is the revolution 
frequency, R is the machine radius, and the average beam current Io is proportional to the 
number of particles N ,  

Newo Io = - 27r 

Substituting (2-15) and (2-22) into (2-14), multiplying , and integrating over 8, we 
have, 

where the relations 

and 
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have been used. 

3 Solution of the Integral Equation 

To solve the transverse dynamic equation (2-24), we define a set of orthogonal polynomials 
according to a weight function W(T)  for the azimuthal mode m [2,3], 

Lrn W ( T ) f j m ) ( T ) f ~ m ) ( T ) T d T  = 6k,t  (3-1) 

Using the orthogonal polynomials, the radial function can be written as, 

W 
(4 (4 

Define the Hankel spectrum for the orthogonal polynomial, 

R(m)(T) = W ( T )  C a k ~  fk l  (T) 
k‘=O 

then we have, 

(3-4) 

The Bessel function Jm(pr) can be expanded by the orthogonal polynomials and the associ- 
ated Hankel spectra, 

Let 

W(T) = &(TI 

Substituting (3-2), (3-4) and (3-5) into (2-24),  we obtain, 

Multiplying (3-7) by ~:”‘(T)T for k = 0, ..., E, integrating over T, and using (3-l), we Snally 
have the following equation, 
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where k is truncated at E .  Define the system matrix, 

(3-9) 

(w - wp - ms)IiE+1 0 ,(m) M(mW) M(”J’) cy(m) 

0 (w - wp - rn’WS)I&+, ] [ a(m’) ] = [ M ( ~ ’ T ~ )  M(m‘P’) ] [;: ] 
where I is the identity matrix. The equation (3-11) can be solved as an eigenvalue problem. 

Finally, the spectra of orthogonal polynomials Aim)@) for a Gaussian distribution with 
a half bunch length q5 = n / 2  are shown in Fig.1, where the azimuthal modes rn is from 0 to 
2, and the number of orthogonal polynomials is 3. 

50 -40 30 -20 -10 a 10 20 30 40 50 
P 

Fig.1. Spectra of Orthogonal Polynomials of Gassian 

The power spectra Ahm)(p)Gm)(p) of the Gaussian distribution with half bunch length 
4 = n/2 and 4 = 7r/4 of the first orthogonal polynomials are shown in Fig.2 for comparison. 
Note that the half bandwidth of the power spectrum equals to nh/q5. In Figs.1 and 2, the 
AGS harmonic number h = 8 is used, one may find in Fig.2 that the half bandwidths are 16p 
and 32p, respectively. If we take the revolution frequency as 350KHz, then the spectrum 
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half bandwidths corresponding to the half bunch lengths q5 = 7r/2 and q5 = 7r/4 are 5.6MH.z 

I 1 
* and 11.2MH2, respectively. 

P 

Fig.2. Power Spectra of First Orthogonal Polynomials 

4 Transverse Impedance 

In this section, we will present the transverse impedances of the resistive wall, the space 
charge effect, and the broad band and narrow band resonators. 

4.1 Resistive wall impedance 

The transverse resistive wall impedance is defined as, 

0 

where R is the machine radius, 20 is the impedance in free space, 377i-2, b is the radius of 
the vacuum chamber, and 6, is the skin depth at the frequency w, 

where p is the resistivity of the vacuum chamber, for steel it can be p = lO%?m, and 
po = 47r x 10-7H/m is the permeability of free space. 

For the AGS, R = 128m, and the vacuum chamber is 15.2cm x 7cm, therefore the vertical 
radius is taken as b = 3.5cm. At the injection, the revolution frequency is 344KH.z. The 
transverse resistive wall impedance at the revolution frequency is ZT(Q) = 0.97( l+j)MO/m. 
Since that the impedance reduces in a rate of the square root of the frequency, therefore the 
most influential part of the resistive wall impedance is at the low frequencies. 

Note that we considered only a smooth vacuum chamber and nothing else. Also we 
assumed that the skin depth is less than the thickness of the chamber, which is taken as 
1.5mm. Should the skin depth be larger than the chamber thickness, the impedance would 
be reversely proportional to the frequency, rather than the square root of the frequency. 
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Finally, the resistivity of the AGS vacuum chamber material can be p = 1.2 x lO%?m and a 
modification factor should be added to the vertical radius of the chamber, since the chamber 
is not a circdar pipe. All of these pose some unknown factors to the total impedance. 
Therefore a measurement is needed for a better knowledge of this impedance. 

* 
4.2 Space charge effect 

The space charge effect can be represented by an impedance defined as, 

where a is the average radius of the beam. For AGS injection, we take a = 2 m ,  p = 0.93, and 
7 = 2.7, then the space charge impedance is ZT(W) = -j12.9MO/m, which is independent 
of the frequency, and can be seen as the negative inductance.. 

Note that the trzpverse spsce charge impedance is defined as proportional to the dif- 
ference between the incoherent and coherent tune shift [4], and the incoherent tune shift, 
affected by the factor l/a2, is much larger than the coherent tune shift, affected by l/b2. It 
can be shown that in the transverse beam dynamic equation (2-24) the incoherent tune shift 
is cancelled from the both side of the equation, and only the coherent tune shift is effective 
to the beam coherent motion. This is different from the counterpart of the longitudinal 
beam motions. The space charge effect itself will not introduce instabilities, however, if the 
coherent tune shift is large, it can affect the Landau damping. In solving the beam dynamic 
equation, if the beam instability is concerned then only the impedance of the coherent space 
charge effect needs to be applied, not the one in (4-3). 

4.3 Broad band resonator 
a 

In general a resonator type impedance can be written as, 

where RT is the transverse resistance, Q is the quality factor and WR is the resonant fre- 
quency. The most important broad band resonator type impedance is the one caused by the 
vacuum chamber discontinuities, which is roughly modeled as a resonator with WR M c/b, 
and Q = 1 [5]. At the AGS, this resonant frequency is about 1.3GHz. At the low frequency, 
this impedance appears to be inductive, which gives rise to a coherent frequency shift, and 
therefore affects the Landau damping. n e  parameters of this impedance is an object of 
measurements. 

4.4 Narrow band resonator 

This type of impedance includes mainly the RF cavities. Usually the longitudinal impedance 
of the cavities is known, therefore a means to translate the longitudinal impedance into a 
transverse one is of interest. There is a general relation between the two impedances [6], 
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where ZL(W) is the longitudinal impedance. This equation can be applied to broad band 
impedance, it fails, however, for narrow band impedance. It is claimed that the Panofsky- 
Wenzel theorem can be used for narrow band impedance [7], 

a 
= C&(W)/W (46) 

The application of this relation often generates unsatisfied results. Therefore, measurements 
are always required. 

5 Chromatic Effect 

One of the most important differences of the transverse motion from the longitudinal counter- 
part is the chromatic effect. The machine chromaticity ( is dehed in the following relation, 

where wp and w p  are the betatron and nominal betatron frequencies, respectively, and Ap 
is the momentum deviation. Meanwhile, the frequency slip factor r ]  is defined in 

(5-2) 
w - w o  AP 

-7- uo Po 
-= 

where w and wo are the revolution and nominal revolution frequencies, respectively. 
These two relations give rise to an important result, 

What can be learned from this equation is that the betatron frequency variation, affected by 
the chromaticity, is proportional to the revolution frequency variation. Since the revolution 
frequency variation is directly related to the synchrotron phase deviation 4, one finds that 
the betatron frequency is no longer constant during the bunch passage. If we define the 
chromatic frequency 

then the beam line density is further modulated by ejwcT, where r is the bunch delay time, 
this means that the beam signal envelope has a frequency shift with the chromatic frequency 
WE. This problem can also be looked from the betatron phase modulation of the beam signal. 
Since the delay time r is related to the phase deviation 4 by, 

4 7 = -- 
wo ( 5 5 )  

substituting this relation into 
phase deviation dependent, 

the perturbation distribution dehed in (2-15) becomes 
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Therefore the sampling number p in the Hankel spectrum of the orthogonal polynomial in 
(3-3) will be replaced by 

p ' = p - -  WE 

wo (5-7) 

Note that in the equations (5-5)-(5-7), if the harmonic number h # 1 is considered, then 
wo should be replaced by hwo. The more intuitive way to understand the implication of 
(5-7) is by simply considering that the power spectrum of the signal shifts by the chromatic 
frequency WE. This af€ects the product of the signal spectrum and the impedance, and hence 
the instabilities. 

6 Single Bunch Instabilities 

6.1 Beam dynamic equation 

We consider only the azimuthal mode m, and neglect the mode coupling. The following 
simplified equation of (3-11) can be used, 

(w - wp - m s ) a ( m )  = M("%m)a(m) (6-1) 
To further simplify the equation, we keep only the first orthogonal polynomial. If the bunch 
is not too short and the high frequency impedance is not significant, then the error generated 
by the simplification can be acceptable. Thus the equation (61) becomes, 

From the previous study, the envelopes of the spectra of the signal and the impedance 
have been determined. Since the beam signal is always periodic with the revolution period 
T = 27r/wo, for single bunch the real spectrum of the signal in fact is a train of pulses, whose 
amplitude is determined by the corresponding envelope. Therefore only the impedance at 
this train of pulses is effective, as shown in ( 6 2 ) .  The rules of the sampling are determined 
by the following factors. 

1. For exact periodic signals with the revolution frequency WO, p represents samplings at 
Pwo. 

2. If synchrotron oscillation is considered, then the signals are not exact periodic, but 
oscillating around the synchronous phase. Now p represents samplings at pwo + m s .  

3. For the transverse dipole motion considered in Section 2, p represents samplings at 
pwo + wp + mws. Since only the samplings change, also the summation of p is endless 
in both directions, the integer part of the betatron tune can be disregarded. It is 
noted that the fractional part of the betatron makes the situation Werent from the 
longitudinal case. 

to the signal, which 
shifts the envelope of the signal. This fact is shown in ( 6 2 )  by the notation p' in the 
signal spectrum, which represents samplings at pwo - wc + wp +nus,  in a more general 
case of h # 1, it becomes pwo - wc/h + wp + m s .  

4. Finally, the nonzero chromaticity introduces a modulation of 
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6.2 Transverse Robinson instability 

In the following, we use equation (6-2) to study several type of instabilities. Since the power 
spectra of the beam signal is always real, the imaginary part of the impedance generates the 
frequency shift and the real part of the impedance is relevant to damping or antidamping. ’ 

Here the attention will be paid to the real part of the impedance. 

The main difference between the two can be, 
Corresponding to the longitudinal Robinson instability, there is a transverse counterpart. 

1. For longitudinal case, the mode m = 1 is dominant, and for transverse the mode m = 0 
is dominant. 

2. For longitudinal, the samplings are at pwo + w s ,  and for transverse they are at 
pwo + W p  + nxJs. 

Consider first a narrow band resonator, such as an RF cavity and its higher order modes. 
The frrst difference shown above is not important in this case, but the second one affects the 
stability criterion. It is known that in the longitudinal case the samplings are shifted by ws 
from the revolution frequency, and the Robinson instability is determined by the RF cavity 
detuning direction. In the transverse case, the samplings are shifted by the fractional part of 
the betatron frequency, which is usually much larger than the synchrotron frequency. Thus, 
the transverse Robinson instability criterion is affected by whether the fractional betatron 
tune is larger or smaller than 1/2, depending on the location of the resonant frequency. Also 
we may notice that for transverse, there is no difference above or below transition, as that 
for longitudinal. In Fig.3, we show an example, where a fractional tune uf = 0.2, and the 
samplings are indicated by long bars. This situation is stable, however, if we let uf = 0.8 
it becomes unstable. Also we may observe that the change of the resonant frequency may 
affect the instabilities. 

0.1 - 

0.05 - 

0 -  

-0.05 - 

-0.1 - 

1 1 

-3 -2 -1 0 1 2 3 
P 

Fig.3. Tmnsverse Robinson Instability, N a m w  Band Resonator 

The resistive wall impedance can be seen as an extension of the resonator with a very 
low resonant frequency. Since the signal spectrum of m = 1 vanishes at the low frequency, 
this impedance is not effective for the longitudinal instability. It is however very important * 
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. .  

for the transverse counterpart where m = 0 mode is dominant. For this impedance it is clear 
that if the fractional betatron tune is smaller than 1/2, the system is stable, and otherwise 
unstable. In Fig.$, an example with uf = 0.2 is shown, the system is stable. 

* 
0. 

I 

4.' 

-2 -1 0 1 . 2  3 
P 

Fig.4. lhnsverse Robinson Instability, Resistive Wall 

6.3 Head tail instability 

With a non-zero chromaticity, the signal spectrum will shift as discussed previously. li 
general, if WE > 0 , i.e. above transition ( > 0 and below transition ( < 0, then the system 
is stable, and vice versa. For higher order modes m > 0, this may not be true. Also we note 
a possible conflict between the Robinson type instability and the head tail instability. The 
final result depends on the total.effect including all these factors. In Fig.5, an example with 
WE > 0 is shown., the system is stable. 

I 

-3 -2 -1 0 I 2 
P 

Fig.5. Head- Tail Instability, N a m w  Band Resonator 
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7 Multiple Bunch Instabilities 
- 

7.1 Beam dynamic equation 

To extend the result from the single bunch to the multiple bunch, we need to review the 
equation (2-24). In the equation, the factor of &(p)A(p) represents the feedback force, and 
the Bessel function Jm(pr) represents the effect of that force applied to the beam. After some 
manipulations, mainly the integration over the radial T, this function gives rise to another 
spectrum A(m)(p), as shown in (6-2), which represents the effect of the feedback force. 

Consider the multiple bunch case with the harmonic number h and the same revolution 
frequency. In the time domain, the signal pulses are h times denser, and in the frequency 
domain, the spectrum pulses are h times sparser. The amplitude of the spectrum, however, 
is h times larger. This affects the spectrum in Z&)A(p). On the other hand, the mechanism 
associated with the feedback effect on a given bunch is unchanged. Therefore if the original 
spectrum &jm’(p) is used, the equation (6-2) is modified as, 

where the added h represents the variation of the amplitude of the spectrum of the signal, 
and meanwhile, the samplings become at phwo + wa + m s .  

7.2 Coupled bunch instability 

To study the coupled bunch instability, the result of the multiple bunch instability can be 
modified by replacing the samplings determined by pho+wp+mws to pho+nwo+wp+mws, 
where n is the coupled bunch mode number. Note that the situation considered in (6-3) is 
for the n = 0 mode. Consider the AGS with the vertical tune u = 8.7, then the coupled 
bunch mode n = 7 is shown in Fig.6. It is observed that this mode is the most unstable one. 

I I 

0.15 

Power spectrum o 
0.1 

0.05 

0 

P 

Fig.6. lFansverse Coupled Bunch Mode n = 7 

For different chromaticity, the coupled bunch modes are shown in Fig.7. At zero chro- 
maticity, about half modes are stable, and the others are unstable. Below transition, moving e 
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to negative chromaticity can improve the situation. Larger chromaticity correction, however, 
may reduce the dynamic aperture and therefore causes beam loss. 

. 

0 0.1 0.2 0.3 -0.4 4.? J I 9  XI' I 

Fig.7. Coupled Bunch Modes, m = 0 

Also for higher order modes, the situation is different. For the same parameters used in 
Fig.7, the coupled bunch modes of m = 1 mode are shown in Fig.8. 

4 

Fig.8. Coupled Bunch Modes, m = 1 

7.3 Partial coupled bunch instability 

The partial coupled bunch instability refers to an interesting case of the coupled bunch 
instability of partially iilled ring. This is an important operation condition at the AGS 
where the beam is transferred from the booster in four batches. A couple$ bunch mode 
implies a low fkequency mode modulation. At the AGS, if we take u = 8.8 , then the n = 7 
coupled bunch mode corresponds merely 69KH2, compared with the betatron oscillation 
frequency of about 3MHz. This low frequency mode comes from all bunches in a given * 
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oscillation pattern, and it is highly idealized. In a partially filled ring, the filled part and 
the gaps in the ring give rise to a low frequency modulation, which is not a single mode but 
some frequency bands. An example of the AGS first injected batch introduced frequency 
modulation is shown in Fig.9, where the simple case of the n = 7 mode is also shown for 
comparison. For an analysis we need to consider the total effect of this modulation, which 
includes the folding of the all frequency components of the modulation and their relative 
phases. 

0.4 

0.2 :: 0 0 5  

As comparison, n-7 mupled bunch is rihown 

P 

Fig.9. lhquency Modulation of the First Batch at the AGS 
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